Cloud Cost Optimization

The Cost Optimization Hierarchy#

Cloud cost optimization follows a hierarchy of impact. Work from the top down – fixing the wrong tier of commitment discount matters far less than shutting down resources nobody uses.

  1. Eliminate waste – turn off unused resources, delete orphaned storage
  2. Right-size – match instance sizes to actual usage
  3. Use commitment discounts – reserved instances, savings plans, CUDs
  4. Shift to spot/preemptible – for fault-tolerant workloads
  5. Optimize storage and network – tiering, transfer patterns, caching
  6. Architect for cost – serverless, auto-scaling, multi-region strategy

Eliminating Waste#

The fastest cost reduction comes from finding resources that serve no purpose. Every cloud provider accumulates these: instances left running after a test, snapshots from decommissioned servers, load balancers with no backends, unattached disks.

Cloud Migration Strategies: The 7 Rs Framework

Cloud Migration Strategies#

A company does not “migrate to the cloud” – it migrates dozens or hundreds of applications, each with different characteristics, dependencies, and risk profiles. The 7 Rs framework provides vocabulary for per-workload decisions, but selecting the right R requires understanding the application, its dependencies, and the organization’s tolerance for change.

The 7 Rs#

Rehost (Lift and Shift)#

Move the application to cloud infrastructure with minimal changes. A VM on-premises becomes an EC2 instance. OS, application code, and configuration remain the same.

Cloud Vendor Product Matrix: Comparing Cloudflare, AWS, Azure, and GCP

Cloud Vendor Product Matrix#

Choosing between cloud vendors requires mapping equivalent services across providers. AWS has 200+ services. Azure has 200+. GCP has 100+. Cloudflare has 20+ but they are tightly integrated and edge-native. This article maps the services that matter for most applications – compute, serverless, databases, storage, networking, and observability – across all four vendors with pricing, availability, and portability for each.

How to Use This Matrix#

Each section maps equivalent products across vendors, then provides:

Cloud-Native vs Portable Infrastructure: A Decision Framework

Cloud-Native vs Portable Infrastructure#

Every infrastructure decision sits on a spectrum between portability and fidelity. On one end, you have generic Kubernetes running on minikube or kind – it works everywhere, costs nothing, and captures the behavior of the Kubernetes API itself. On the other end, you have cloud-native managed services – EKS with IRSA and ALB Ingress Controller, GKE with Workload Identity and Cloud Load Balancing, AKS with Azure AD Pod Identity and Azure Load Balancer. These capture the behavior of the actual platform your workloads will run on.

Database High Availability Patterns

Database High Availability Patterns#

Every database HA decision starts with two numbers: RPO (Recovery Point Objective – how much data you can afford to lose) and RTO (Recovery Time Objective – how long the database can be unavailable). These numbers dictate the pattern, and each pattern carries specific operational tradeoffs.

Core Concepts#

RPO = 0 means zero data loss. Every committed transaction must survive a failure. This requires synchronous replication, which adds latency to every write.

Database Performance Investigation Runbook

Database Performance Investigation Runbook#

When a database is slow, resist the urge to immediately tune configuration parameters. Follow this sequence: identify what is slow, understand why, then fix the specific bottleneck. Most performance problems are caused by missing indexes or a single bad query, not global configuration issues.

Phase 1 – Identify Slow Queries#

The first step is always finding which queries are consuming the most time.

PostgreSQL: pg_stat_statements#

Enable the extension if not already loaded:

Designing Internal Developer Platforms

What an Internal Developer Platform Actually Is#

An Internal Developer Platform (IDP) is the set of tools, workflows, and self-service capabilities that a platform team builds and maintains so application developers can ship code without filing tickets or waiting on other teams. It is not a single product. It is a curated layer on top of your existing infrastructure that abstracts complexity while preserving the ability to go deeper when needed.

Ephemeral Cloud Clusters: Create, Validate, Destroy Sequences for EKS, GKE, and AKS

Ephemeral Cloud Clusters#

Ephemeral clusters exist for one purpose: validate something, then disappear. They are not staging environments, not shared dev clusters, not long-lived resources that someone forgets to turn off. The operational model is strict – create, validate, destroy – and the entire sequence must be automated so that destruction cannot be forgotten.

The cost of getting this wrong is real. A three-node EKS cluster left running over a weekend costs roughly $15. Left running for a month, $200. Multiply by the number of developers or CI pipelines that create clusters, and forgotten ephemeral infrastructure becomes a significant budget line item. Every template in this article includes auto-destroy mechanisms to prevent this.

Event-Driven Architecture for Microservices

Event-Driven Architecture for Microservices#

In a microservices architecture, services need to communicate. The two fundamental approaches are synchronous (request-response) and asynchronous (event-driven). Most systems use both – the decision is which interactions should be synchronous and which should be event-driven.

Synchronous vs Asynchronous Communication#

Synchronous (request-response): Service A calls Service B and waits for a response. Simple, familiar, and works well when A needs the response to continue. The cost is temporal coupling – if B is down, A fails.

GitOps and Infrastructure as Code: Reconciliation Patterns for Terraform, ArgoCD, and Crossplane

GitOps and Infrastructure as Code#

GitOps says: the desired state is in Git. A controller continuously reconciles the real state to match. Infrastructure as Code says: the desired state is in code. A human (or agent) runs apply to push changes.

These two paradigms overlap but do not align perfectly. Kubernetes resources fit the GitOps model well — ArgoCD/Flux watch Git, detect differences, and apply changes continuously. Cloud infrastructure (VPCs, databases, IAM roles) fits the IaC model better — Terraform tracks state, computes diffs, and applies on command.