ArgoCD Sync Waves, Resource Hooks, and Sync Options

ArgoCD Sync Waves, Resource Hooks, and Sync Options#

ArgoCD sync is not just “apply all manifests at once.” You can control the order resources are created, run pre- and post-deployment tasks, restrict when syncs can happen, and tune how resources are applied. This is where ArgoCD moves from basic GitOps to production-grade deployment orchestration.

Sync Waves#

Sync waves control the order in which resources are applied. Every resource has a wave number (default 0). Resources in lower waves are applied and must be healthy before higher waves begin.

ArgoCD with Terraform and Crossplane: Managing Infrastructure Alongside Applications

ArgoCD with Terraform and Crossplane#

Applications need infrastructure – databases, queues, caches, object storage, DNS records, certificates. In a GitOps workflow managed by ArgoCD, there are two approaches to provisioning that infrastructure: Crossplane (Kubernetes-native) and Terraform (external). Each has different strengths and integration patterns with ArgoCD.

Crossplane: Infrastructure as Kubernetes CRDs#

Crossplane extends Kubernetes with CRDs that represent cloud resources. An RDS instance becomes a YAML manifest. A GCS bucket becomes a YAML manifest. ArgoCD manages these manifests exactly like it manages Deployments and Services.

Artifact Management: Repository Selection, Container Lifecycle, Retention, and Promotion Workflows

Artifact Management#

Every CI/CD pipeline produces artifacts: container images, compiled binaries, library packages, Helm charts. Where these artifacts live, how long they are retained, how they are promoted between environments, and how they are scanned for vulnerabilities are decisions that affect security, cost, and operational reliability. Choosing the wrong artifact repository or neglecting lifecycle management creates accumulating storage costs and security blind spots.

Repository Options#

JFrog Artifactory#

Artifactory is the most comprehensive option. It supports every package type: Docker images, Maven/Gradle JARs, npm packages, PyPI wheels, Helm charts, Go modules, NuGet packages, and generic binaries. It serves as a universal artifact store and a caching proxy for upstream registries.

Building a Kubernetes Deployment Pipeline: From Code Push to Production

Building a Kubernetes Deployment Pipeline: From Code Push to Production#

A deployment pipeline connects a code commit to a running container in your cluster. This operational sequence walks through building one end-to-end, with decision points at each phase and verification steps to confirm the pipeline works before moving on.

Phase 1 – Source Control and CI#

Step 1: Repository Structure#

Every deployable service needs three things alongside its application code: a Dockerfile, deployment manifests, and a CI pipeline definition.

CI/CD Patterns for Monorepos

CI/CD Patterns for Monorepos#

A monorepo puts multiple packages, services, and applications in a single repository. This simplifies cross-package changes and dependency management, but it breaks the assumption that most CI systems are built on: one repo means one build. Without careful pipeline design, every commit triggers a full rebuild of everything, and CI becomes the bottleneck.

The Core Problem#

In a monorepo, a commit that touches packages/auth-service/src/handler.ts should build and test auth-service and its dependents, but not billing-service or frontend. Getting this right is the central challenge of monorepo CI.

Debugging ArgoCD: Diagnosing Sync Failures, Health Checks, RBAC, and Repo Issues

Debugging ArgoCD#

Most ArgoCD problems fall into predictable categories: sync stuck in a bad state, resources showing OutOfSync when they should not be, health checks reporting wrong status, RBAC blocking operations, or repository connections failing. Here is how to diagnose and fix each one.

Application Stuck in Progressing#

An application stuck in Progressing means ArgoCD is waiting for a resource to become healthy and it never does. The most common causes:

Debugging GitHub Actions: Triggers, Failures, Secrets, Caching, and Performance

Debugging GitHub Actions#

When a GitHub Actions workflow fails or does not behave as expected, the problem falls into a few predictable categories. This guide covers each one with the diagnostic steps and fixes.

Workflow Not Triggering#

The most common GitHub Actions “bug” is a workflow that never runs.

Check the event and branch filter. A push trigger with branches: [main] will not fire for pushes to feature/xyz. A pull_request trigger fires for the PR’s head branch, not the base branch:

Git Branching Strategies: Trunk-Based, GitHub Flow, and When to Use What

Git Branching Strategies#

Choosing a branching strategy is choosing your team’s speed limit. The wrong model introduces merge conflicts, stale branches, and release bottlenecks. The right model depends on how you deploy, how big your team is, and how much you trust your test suite.

Trunk-Based Development#

Everyone commits to main (or very short-lived branches that merge within hours). No long-running feature branches. No develop branch. No release branches unless you need to patch old versions.

GitHub Actions Fundamentals: Workflows, Triggers, Jobs, and Data Passing

GitHub Actions Fundamentals#

GitHub Actions is CI/CD built into GitHub. Workflows are YAML files in .github/workflows/. They run on GitHub-hosted or self-hosted machines in response to repository events. No external CI server required.

Workflow File Structure#

Every workflow has three levels: workflow (triggers and config), jobs (parallel units of work), and steps (sequential commands within a job).

name: CI

on:
  push:
    branches: [main]
  pull_request:
    branches: [main]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - uses: actions/setup-go@v5
        with:
          go-version: '1.23'
      - run: go test ./...

  lint:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - uses: golangci/golangci-lint-action@v6

Jobs run in parallel by default. Steps within a job run sequentially. Each job gets a fresh runner – no state carries over between jobs unless you explicitly pass it via artifacts or outputs.

GitHub Actions Kubernetes Pipeline: From Git Push to Helm Deploy

GitHub Actions Kubernetes Pipeline#

This guide builds a complete pipeline: push code, build a container image, validate the Helm chart, and deploy to Kubernetes. Each stage gates the next, so broken images never reach your cluster.

Pipeline Overview#

The pipeline has four stages:

  1. Build and push the container image to GitHub Container Registry (GHCR).
  2. Lint and validate the Helm chart with helm lint and kubeconform.
  3. Deploy to dev automatically on pushes to main.
  4. Promote to staging and production via manual approval.

Complete Workflow File#

# .github/workflows/deploy.yml
name: Build and Deploy

on:
  push:
    branches: [main]
  workflow_dispatch:
    inputs:
      environment:
        description: "Target environment"
        required: true
        type: choice
        options: [dev, staging, production]

env:
  REGISTRY: ghcr.io
  IMAGE_NAME: ${{ github.repository }}

jobs:
  build:
    runs-on: ubuntu-latest
    permissions:
      contents: read
      packages: write
    outputs:
      image-tag: ${{ steps.meta.outputs.version }}
    steps:
      - uses: actions/checkout@v4

      - name: Log in to GHCR
        uses: docker/login-action@v3
        with:
          registry: ${{ env.REGISTRY }}
          username: ${{ github.actor }}
          password: ${{ secrets.GITHUB_TOKEN }}

      - name: Extract metadata
        id: meta
        uses: docker/metadata-action@v5
        with:
          images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
          tags: |
            type=sha,prefix=
            type=ref,event=branch

      - name: Build and push
        uses: docker/build-push-action@v6
        with:
          context: .
          push: true
          tags: ${{ steps.meta.outputs.tags }}
          labels: ${{ steps.meta.outputs.labels }}

  validate:
    runs-on: ubuntu-latest
    needs: build
    steps:
      - uses: actions/checkout@v4

      - name: Install Helm
        uses: azure/setup-helm@v4

      - name: Helm lint
        run: helm lint ./charts/my-app -f charts/my-app/values.yaml

      - name: Install kubeconform
        run: |
          curl -sL https://github.com/yannh/kubeconform/releases/latest/download/kubeconform-linux-amd64.tar.gz \
            | tar xz -C /usr/local/bin

      - name: Validate rendered templates
        run: |
          helm template my-app ./charts/my-app \
            --set image.tag=${{ needs.build.outputs.image-tag }} \
            | kubeconform -strict -summary \
              -kubernetes-version 1.29.0

  deploy-dev:
    runs-on: ubuntu-latest
    needs: [build, validate]
    if: github.ref == 'refs/heads/main'
    environment: dev
    steps:
      - uses: actions/checkout@v4

      - name: Install Helm
        uses: azure/setup-helm@v4

      - name: Set up kubeconfig
        run: |
          mkdir -p ~/.kube
          echo "${{ secrets.KUBECONFIG_DEV }}" | base64 -d > ~/.kube/config
          chmod 600 ~/.kube/config

      - name: Deploy with Helm
        run: |
          helm upgrade --install my-app ./charts/my-app \
            --namespace my-app-dev \
            --create-namespace \
            -f charts/my-app/values-dev.yaml \
            --set image.tag=${{ needs.build.outputs.image-tag }} \
            --wait --timeout 300s

      - name: Verify deployment
        run: kubectl rollout status deployment/my-app -n my-app-dev --timeout=120s

  deploy-staging:
    runs-on: ubuntu-latest
    needs: [build, validate, deploy-dev]
    environment: staging
    steps:
      - uses: actions/checkout@v4

      - name: Install Helm
        uses: azure/setup-helm@v4

      - name: Set up kubeconfig
        run: |
          mkdir -p ~/.kube
          echo "${{ secrets.KUBECONFIG_STAGING }}" | base64 -d > ~/.kube/config
          chmod 600 ~/.kube/config

      - name: Deploy with Helm
        run: |
          helm upgrade --install my-app ./charts/my-app \
            --namespace my-app-staging \
            --create-namespace \
            -f charts/my-app/values-staging.yaml \
            --set image.tag=${{ needs.build.outputs.image-tag }} \
            --wait --timeout 300s

  deploy-production:
    runs-on: ubuntu-latest
    needs: [build, validate, deploy-staging]
    environment: production
    steps:
      - uses: actions/checkout@v4

      - name: Install Helm
        uses: azure/setup-helm@v4

      - name: Set up kubeconfig
        run: |
          mkdir -p ~/.kube
          echo "${{ secrets.KUBECONFIG_PROD }}" | base64 -d > ~/.kube/config
          chmod 600 ~/.kube/config

      - name: Deploy with Helm
        run: |
          helm upgrade --install my-app ./charts/my-app \
            --namespace my-app-prod \
            --create-namespace \
            -f charts/my-app/values-production.yaml \
            --set image.tag=${{ needs.build.outputs.image-tag }} \
            --wait --timeout 300s

Key Design Decisions#

Image Tagging with Git SHA#

The docker/metadata-action generates tags from the git SHA. This creates immutable, traceable image tags – you can always identify exactly which commit produced a given deployment.