Ingress Controllers and Routing Patterns

Ingress Controllers and Routing Patterns#

An Ingress resource defines HTTP routing rules – which hostnames and paths map to which backend Services. But an Ingress resource does nothing on its own. You need an Ingress controller running in the cluster to watch for Ingress resources and configure the actual reverse proxy.

Ingress Controllers#

The two most common controllers are nginx-ingress and Traefik.

nginx-ingress (ingress-nginx):

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm install ingress-nginx ingress-nginx/ingress-nginx --namespace ingress-nginx --create-namespace

Note: there are two different nginx ingress projects. kubernetes/ingress-nginx (community) and nginxinc/kubernetes-ingress (NGINX Inc). The community version is far more common. Make sure you install from https://kubernetes.github.io/ingress-nginx, not the NGINX Inc chart.

Istio Service Mesh: Traffic Management, Security, and Observability

Istio Service Mesh#

Istio adds a proxy sidecar (Envoy) to every pod in the mesh. These proxies handle traffic routing, mutual TLS, retries, circuit breaking, and telemetry without changing application code. The control plane (istiod) pushes configuration to all sidecars.

When You Actually Need a Service Mesh#

You need Istio when you have multiple services requiring mTLS, fine-grained traffic control (canary releases, fault injection), or consistent observability across service-to-service communication. If you have fewer than five services, standard Kubernetes Services and NetworkPolicies are sufficient. A service mesh adds operational complexity – more moving parts, higher memory usage per sidecar, and a learning curve for proxy-level debugging.