Long-Running Workflow Orchestration: State Machines, Checkpointing, and Resumable Multi-Agent Execution

Long-Running Workflow Orchestration#

Most agent examples show single-turn or single-session tasks: answer a question, write a function, debug an error. Real projects are different. Building a feature, migrating a database, setting up a monitoring stack – these take hours, span multiple sessions, involve parallel work streams, and must survive context window resets, session timeouts, and partial failures.

This article covers the architecture for workflows that last hours or days: how to model progress as a state machine, how to checkpoint for reliable resumption, how to delegate to parallel sub-agents without losing coherence, and how to recover when things fail partway through.

Multi-Agent Coordination: Patterns for Dividing and Conquering Infrastructure Tasks

Multi-Agent Coordination#

A single agent can read files, call APIs, and reason about results. But some tasks are too broad, too slow, or too dangerous for one agent to handle alone. Debugging a production outage might require one agent analyzing logs, another checking infrastructure state, and a third reviewing recent deployments – simultaneously. Multi-agent coordination is how you split work across agents without them stepping on each other.

The hard part is not spawning multiple agents. The hard part is deciding which coordination pattern fits the task, how agents share information, and what happens when they disagree.