cert-manager and external-dns: Automatic TLS and DNS on Kubernetes

cert-manager and external-dns#

These two controllers solve the two most tedious parts of exposing services on Kubernetes: getting TLS certificates and creating DNS records. Together, they make it so that creating an Ingress resource automatically provisions a DNS record pointing to your cluster and a valid TLS certificate for the hostname.

cert-manager#

cert-manager watches for Certificate resources and Ingress annotations, then obtains and renews TLS certificates automatically.

Installation#

helm repo add jetstack https://charts.jetstack.io
helm install cert-manager jetstack/cert-manager \
  --namespace cert-manager \
  --create-namespace \
  --set crds.enabled=true

The crds.enabled=true flag installs the CRDs as part of the Helm release. Verify with kubectl get pods -n cert-manager – you should see cert-manager, cert-manager-cainjector, and cert-manager-webhook all Running.

From Empty Cluster to Production-Ready: The Complete Setup Sequence

From Empty Cluster to Production-Ready#

This is the definitive operational plan for taking a fresh Kubernetes cluster and making it production-ready. Each phase builds on the previous one, with verification steps between phases and rollback notes where applicable. An agent should be able to follow this sequence end-to-end.

Estimated timeline: 5 days for a single operator. Phases 1-2 are blocking prerequisites. Phases 3-6 can partially overlap.


Phase 1 – Foundation (Day 1)#

Everything else depends on a healthy cluster with proper namespacing and storage. Do not proceed until every verification step passes.

Kubernetes Operators and Crossplane: Extending the Platform

Kubernetes Operators and Crossplane#

The Operator Pattern#

An operator is a CRD (Custom Resource Definition) paired with a controller. The CRD defines a new resource type (like Certificate or KafkaCluster). The controller watches for instances of that CRD and reconciles actual state to match desired state. This is the same reconciliation loop that powers Deployments, extended to anything.

Operators encode operational knowledge into software. Instead of a runbook with 47 steps to create a Kafka cluster, you declare what you want and the operator handles creation, scaling, upgrades, and failure recovery.

TLS Certificate Lifecycle Management

Certificate Basics#

A TLS certificate binds a public key to a domain name. The certificate is signed by a Certificate Authority (CA) that browsers and operating systems trust. The chain goes: your certificate, signed by an intermediate CA, signed by a root CA. All three must be present and valid for a client to trust the connection.

Self-Signed Certificates for Development#

For local development and testing, generate a self-signed certificate. Clients will not trust it by default, but you can add it to your local trust store.

Certificate Management Deep Dive

PKI Fundamentals#

A Public Key Infrastructure (PKI) is a hierarchy of trust. At the top sits the Root CA, a certificate authority that signs its own certificate and is explicitly trusted by all participants. Below it are Intermediate CAs, signed by the root, which handle day-to-day certificate issuance. At the bottom are leaf certificates, the actual certificates used by servers, clients, and workloads.

Root CA (self-signed, offline, 10-20 year validity)
  |
  +-- Intermediate CA (signed by root, online, 3-5 year validity)
        |
        +-- Leaf Certificate (signed by intermediate, 90 days or less)
        +-- Leaf Certificate
        +-- Leaf Certificate

Never use the root CA directly to sign leaf certificates. If the root CA’s private key is compromised, the entire PKI must be rebuilt from scratch. Keeping it offline and behind an intermediate CA limits the blast radius. If an intermediate CA is compromised, you revoke it and issue a new one from the root – leaf certificates from other intermediates remain valid.

Secrets Rotation Patterns

Why Rotation Matters#

A credential that never changes is a credential waiting to be exploited. Leaked credentials appear in git history, log files, CI build outputs, developer laptops, and third-party SaaS tools. If a database password has been the same for two years, every person who has ever had access to it still has access – former employees, former contractors, compromised CI systems.

Regular rotation limits the blast radius. A credential that rotates every 24 hours is only useful for 24 hours after compromise. Compliance frameworks (PCI-DSS, SOC2, HIPAA) mandate rotation schedules. But compliance aside, rotation is a pragmatic defense: assume credentials will leak and make the leak time-limited.

TLS Deep Dive: Certificate Chains, Handshake, Cipher Suites, and Debugging Connection Issues

The TLS Handshake#

Every HTTPS connection starts with a TLS handshake that establishes encryption parameters and verifies the server’s identity. The simplified flow for TLS 1.2:

Client                              Server
  |── ClientHello ──────────────────>|   (supported versions, cipher suites, random)
  |<────────────────── ServerHello ──|   (chosen version, cipher suite, random)
  |<──────────────── Certificate  ──|   (server's certificate chain)
  |<───────────── ServerKeyExchange ─|   (key exchange parameters)
  |<───────────── ServerHelloDone  ──|
  |── ClientKeyExchange ───────────>|   (client's key exchange contribution)
  |── ChangeCipherSpec ────────────>|   (switching to encrypted communication)
  |── Finished ────────────────────>|   (encrypted verification)
  |<──────────── ChangeCipherSpec ──|
  |<──────────────────── Finished ──|
  |<═══════ Encrypted traffic ═════>|

TLS 1.3 simplifies this significantly. The client sends its key share in the ClientHello, allowing the handshake to complete in a single round trip. TLS 1.3 also removed insecure cipher suites and compression, eliminating entire classes of vulnerabilities (BEAST, CRIME, POODLE).