Choosing a Kubernetes Policy Engine: OPA/Gatekeeper vs Kyverno vs Pod Security Admission

Choosing a Kubernetes Policy Engine#

Kubernetes does not enforce security best practices by default. A freshly deployed cluster allows containers to run as root, pull images from any registry, mount the host filesystem, and use the host network. Policy engines close this gap by intercepting API requests through admission webhooks and rejecting or modifying resources that violate your rules.

The three main options – Pod Security Admission (built-in), OPA Gatekeeper, and Kyverno – serve different needs. Choosing the wrong one leads to either insufficient enforcement or unnecessary operational burden.

Implementing Compliance as Code

Implementing Compliance as Code#

Compliance as code encodes compliance requirements as machine-readable policies evaluated automatically, continuously, and with every change. Instead of quarterly spreadsheet audits, a policy like “all S3 buckets must have encryption enabled” becomes a check that runs in CI, blocks non-compliant Terraform plans, and scans running infrastructure hourly. Evidence generation is automatic. Drift is detected immediately.

Step 1: Map Compliance Controls to Technical Policies#

Translate your compliance framework’s controls into specific, testable technical requirements. This mapping bridges auditor language and infrastructure code.

OPA Gatekeeper: Policy as Code for Kubernetes

OPA Gatekeeper: Policy as Code for Kubernetes#

Gatekeeper is a Kubernetes-native policy engine built on Open Policy Agent (OPA). It runs as a validating admission webhook and evaluates policies written in Rego against every matching API request. Instead of deploying raw Rego files to an OPA server, Gatekeeper uses Custom Resource Definitions: you define policies as ConstraintTemplates and instantiate them as Constraints. This makes policy management declarative, auditable, and version-controlled.