Building a Kubernetes Deployment Pipeline: From Code Push to Production

Building a Kubernetes Deployment Pipeline: From Code Push to Production#

A deployment pipeline connects a code commit to a running container in your cluster. This operational sequence walks through building one end-to-end, with decision points at each phase and verification steps to confirm the pipeline works before moving on.

Phase 1 – Source Control and CI#

Step 1: Repository Structure#

Every deployable service needs three things alongside its application code: a Dockerfile, deployment manifests, and a CI pipeline definition.

Choosing a Secret Management Strategy: K8s Secrets vs Vault vs Sealed Secrets vs External Secrets

Choosing a Secret Management Strategy#

Secrets – database credentials, API keys, TLS certificates, encryption keys – must be available to pods at runtime. At the same time, they must not be stored in plain text in git, should be rotatable without downtime, and should produce an audit trail showing who accessed what and when. No single tool satisfies every requirement, and the right choice depends on your security maturity, operational capacity, and compliance obligations.

Debugging ArgoCD: Diagnosing Sync Failures, Health Checks, RBAC, and Repo Issues

Debugging ArgoCD#

Most ArgoCD problems fall into predictable categories: sync stuck in a bad state, resources showing OutOfSync when they should not be, health checks reporting wrong status, RBAC blocking operations, or repository connections failing. Here is how to diagnose and fix each one.

Application Stuck in Progressing#

An application stuck in Progressing means ArgoCD is waiting for a resource to become healthy and it never does. The most common causes:

From Empty Cluster to Production-Ready: The Complete Setup Sequence

From Empty Cluster to Production-Ready#

This is the definitive operational plan for taking a fresh Kubernetes cluster and making it production-ready. Each phase builds on the previous one, with verification steps between phases and rollback notes where applicable. An agent should be able to follow this sequence end-to-end.

Estimated timeline: 5 days for a single operator. Phases 1-2 are blocking prerequisites. Phases 3-6 can partially overlap.


Phase 1 – Foundation (Day 1)#

Everything else depends on a healthy cluster with proper namespacing and storage. Do not proceed until every verification step passes.

Grafana Organization: Folders, Permissions, Provisioning, and Dashboard Lifecycle

Folder Structure Strategy#

Grafana folders organize dashboards and control access through permissions. The folder structure you choose determines how teams find dashboards and who can edit them. Three patterns work in practice, each suited to a different organizational shape.

By Team#

When teams own distinct services and rarely need cross-team dashboards:

Platform/
  Node Overview
  Kubernetes Cluster
  Networking
Backend/
  API Gateway
  User Service
  Payment Service
Frontend/
  Web Vitals
  CDN Performance
Data/
  Kafka Pipelines
  ETL Jobs
  Data Quality

Each team gets Editor access to their folder and Viewer access to everything else. This works well when ownership boundaries are clear.

Self-Service Infrastructure Patterns

The Problem Self-Service Solves#

Developers need infrastructure: databases, caches, message queues, storage buckets, DNS records. In most organizations, getting these means filing a ticket, waiting days for someone to provision, and receiving credentials in a Slack DM. This bottleneck incentivizes workarounds — manual console provisioning, skipped security configs, everything crammed into shared databases.

Self-service infrastructure lets developers provision what they need directly, within guardrails the platform team defines. Choose a resource from a catalog, fill in parameters, and the system provisions it and returns connection details. No tickets, no waiting.

Choosing a GitOps Tool: ArgoCD vs Flux vs Jenkins vs GitHub Actions for Kubernetes Deployments

Choosing a GitOps Tool#

The term “GitOps” is applied to everything from a simple kubectl apply in a GitHub Actions workflow to a fully reconciled, pull-based deployment architecture with drift detection. These are fundamentally different approaches. Choosing between them depends on your team’s operational maturity, cluster count, and tolerance for running controllers in your cluster.

What GitOps Actually Means#

GitOps, as defined by the OpenGitOps principles (a CNCF sandbox project), has four requirements: declarative desired state, state versioned in git, changes applied automatically, and continuous reconciliation with drift detection. The last two are what separate true GitOps from “CI/CD that uses git.”

GitOps for Kubernetes: Patterns, Tools, and Workflow Design

GitOps for Kubernetes#

GitOps is a deployment model where git is the source of truth for your cluster’s desired state. A controller running inside the cluster watches a git repository and continuously reconciles the live state to match what is declared in git. When you want to change something, you commit to git. The controller detects the change and applies it.

This replaces kubectl apply from laptops and CI pipelines with a pull-based model where the cluster pulls its own configuration. The benefits are an audit trail in git history, easy rollback via git revert, and drift detection when someone makes manual changes.

Multi-Cluster Kubernetes: Architecture, Networking, and Management Patterns

Multi-Cluster Kubernetes#

A single Kubernetes cluster is a single blast radius. A bad deployment, a control plane failure, a misconfigured admission webhook – any of these can take down everything. Multi-cluster is not about complexity for its own sake. It is about isolation, resilience, and operating workloads that span regions, regulations, or teams.

Why Multi-Cluster#

Blast radius isolation. A cluster-wide failure (etcd corruption, bad admission webhook, API server overload) only affects one cluster. Critical workloads in another cluster are untouched.