Grafana Mimir for Long-Term Prometheus Storage

Grafana Mimir for Long-Term Prometheus Storage#

Prometheus stores metrics on local disk with a practical retention limit of weeks to a few months. Beyond that, you need a long-term storage solution. Grafana Mimir is a horizontally scalable, multi-tenant time series database designed for exactly this purpose. It is API-compatible with Prometheus – Grafana queries Mimir using the same PromQL, and Prometheus pushes data to Mimir via remote_write.

Mimir is the successor to Cortex. Grafana Labs forked Cortex, rewrote significant portions for performance, and released Mimir under the AGPLv3 license. If you see references to Cortex architecture, the concepts map directly to Mimir with improvements.

Grafana Organization: Folders, Permissions, Provisioning, and Dashboard Lifecycle

Folder Structure Strategy#

Grafana folders organize dashboards and control access through permissions. The folder structure you choose determines how teams find dashboards and who can edit them. Three patterns work in practice, each suited to a different organizational shape.

By Team#

When teams own distinct services and rarely need cross-team dashboards:

Platform/
  Node Overview
  Kubernetes Cluster
  Networking
Backend/
  API Gateway
  User Service
  Payment Service
Frontend/
  Web Vitals
  CDN Performance
Data/
  Kafka Pipelines
  ETL Jobs
  Data Quality

Each team gets Editor access to their folder and Viewer access to everything else. This works well when ownership boundaries are clear.

Kubernetes Namespace Organization: Strategies That Actually Work

Kubernetes Namespace Organization#

Namespaces are Kubernetes’ primary mechanism for dividing a cluster among teams, applications, and environments. Getting the strategy right early saves significant pain later. Getting it wrong means RBAC tangles, resource contention, and deployment confusion.

Strategy 1: Per-Team Namespaces#

Each team gets a namespace (team-platform, team-payments, team-frontend). All applications owned by that team deploy into it.

When it works: Clear team boundaries with shared responsibility for multiple services.

Multi-Tenancy Patterns: Namespace Isolation, vCluster, and Dedicated Clusters

Multi-Tenancy Patterns: Namespace Isolation, vCluster, and Dedicated Clusters#

Multi-tenancy in Kubernetes means running workloads for multiple teams, customers, or environments on shared infrastructure. The core tension is always the same: sharing reduces cost, but isolation prevents blast radius. Choosing the wrong model creates security gaps or wastes money. This guide provides a framework for selecting the right approach and implementing it correctly.

The Three Models#

Every Kubernetes multi-tenancy approach falls into one of three categories, each with different isolation guarantees:

Namespace Strategy and Multi-Tenancy: Isolation, Quotas, and Policies

Namespace Strategy and Multi-Tenancy#

Namespaces are the foundation for isolating workloads in a shared Kubernetes cluster. Without a deliberate strategy, teams deploy into arbitrary namespaces, resources are unbound, and one misbehaving application can take down the entire cluster.

Why Namespaces Matter#

Namespaces provide four isolation boundaries:

  • RBAC scoping: Roles and RoleBindings are namespace-scoped, so you can grant teams access to their namespaces only.
  • Resource quotas: Limit CPU, memory, and object counts per namespace, preventing one team from starving others.
  • Network policies: Restrict traffic between namespaces so a compromised application cannot reach services it should not.
  • Organizational clarity: kubectl get pods -n payments-prod shows exactly what you expect, not a jumble of unrelated workloads.

System Namespaces#

These exist in every cluster and should be off-limits to application teams: