CircleCI Pipeline Patterns: Orbs, Executors, Workspaces, Parallelism, and Approval Workflows

CircleCI Pipeline Patterns#

CircleCI pipelines are defined in .circleci/config.yml. The configuration model uses workflows to orchestrate jobs, jobs to define execution units, and steps to define commands within a job. Every job runs inside an executor – a Docker container, Linux VM, macOS VM, or Windows VM.

Config Structure and Executors#

A minimal config defines a job and a workflow:

version: 2.1

executors:
  go-executor:
    docker:
      - image: cimg/go:1.22
    resource_class: medium
    working_directory: ~/project

jobs:
  build:
    executor: go-executor
    steps:
      - checkout
      - run:
          name: Build application
          command: go build -o myapp ./cmd/myapp

workflows:
  main:
    jobs:
      - build

Named executors let you reuse environment definitions across jobs. The resource_class controls CPU and memory – small (1 vCPU/2GB), medium (2 vCPU/4GB), large (4 vCPU/8GB), xlarge (8 vCPU/16GB). Choose the smallest class that avoids OOM kills to keep costs down.

Buildkite Pipeline Patterns: Dynamic Pipelines, Agents, Plugins, and Parallel Builds

Buildkite Pipeline Patterns#

Buildkite splits CI/CD into two parts: a hosted web service that manages pipelines, builds, and the UI, and self-hosted agents that execute the actual work. This architecture means your code, secrets, and build artifacts never touch Buildkite’s infrastructure. The agents run on your machines – EC2 instances, Kubernetes pods, bare metal, laptops.

Why Teams Choose Buildkite#

The question usually comes up against Jenkins and GitHub Actions.

Over Jenkins: Buildkite eliminates the Jenkins controller as a single point of failure. There is no plugin compatibility hell, no Groovy DSL, no Java memory tuning. Agents are stateless binaries that poll for work. Scaling is adding more agents. Jenkins requires careful capacity planning of the controller itself.

CI/CD Cost Optimization: Runner Sizing, Caching ROI, Spot Instances, and Build Minute Economics

CI/CD Cost Optimization#

CI/CD costs grow quietly. A team of ten pushing five times a day, running a 15-minute pipeline on 4-core runners, burns through 2,500 build minutes per week. On GitHub Actions at $0.008/minute for Linux runners, that is $20/week. Scale to fifty developers with integration tests, matrix builds, and nightly jobs, and you are looking at $500-$2,000/month before anyone notices.

The fix is not running fewer tests or skipping builds. It is eliminating waste: jobs that use more compute than they need, caches that are never restored, full builds triggered by README changes, and runners sitting idle between jobs.

Agent-Oriented Terraform: Linear Patterns for Machine-Managed Infrastructure

Agent-Oriented Terraform#

Most Terraform code is written by humans for humans. It favors abstraction, DRY principles, and deep module nesting — patterns that make sense when a human maintains a mental model of the codebase. Agents do not maintain mental models. They read code fresh each time, trace references to resolve dependencies, and reason about the full resource graph in a single context window.

The patterns that make Terraform elegant for humans make it expensive for agents. Deep module nesting multiplies the files an agent must read. Variable threading through three layers of modules hides dependencies behind indirection. Complex for_each over maps of objects creates resources that are invisible until runtime. The agent spends most of its context on navigation, not comprehension.