Prompt Engineering for Infrastructure Operations: Templates, Safety, and Structured Reasoning

Prompt Engineering for Infrastructure Operations#

Infrastructure prompts differ from general-purpose prompts in one critical way: the output often drives real actions on real systems. A hallucinated filename in a creative writing task is harmless. A hallucinated resource name in a Kubernetes delete command causes an outage. Every prompt pattern here is designed with that asymmetry in mind – prioritizing correctness and safety over cleverness.

Structured Output for Infrastructure Data#

Infrastructure operations produce structured data: IP addresses, resource names, status codes, configuration values. Free-form text responses create parsing fragility. Force structured output from the start.

Prompt Engineering for Local Models: Presets, Focus Areas, and Differences from Cloud Model Prompting

Prompt Engineering for Local Models#

Prompting a 7B local model is not the same as prompting Claude or GPT-4. Cloud models are overtrained on instruction following, tolerate vague prompts, and self-correct. Small local models need more structure, more constraints, and more explicit formatting instructions. The prompts that work effortlessly on cloud models often produce garbage on local models.

This is not a weakness — it is a design consideration. Local models trade generality for speed and cost. Your prompts must compensate by being more specific.