Agent Runbook Generation: Producing Verified Infrastructure Deliverables

Agent Runbook Generation#

An agent that says “you should probably add a readiness probe to your deployment” is giving advice. An agent that hands you a tested manifest with the readiness probe configured, verified against a real cluster, with rollback steps if the probe misconfigures – that agent is producing a deliverable. The difference matters.

The core thesis of infrastructure agent work is that the output is always a deliverable – a runbook, playbook, tested manifest, or validated configuration – never a direct action on someone else’s systems. This article covers the complete workflow for generating those deliverables: understanding requirements, planning steps, executing in a sandbox, capturing what worked, and packaging the result.

Sandbox to Production: The Complete Workflow for Verified Infrastructure Deliverables

Sandbox to Production#

An agent that produces infrastructure deliverables works in a sandbox. It does not touch production. It does not reach into someone else’s cluster, database, or cloud account. It works in an isolated environment, tests its work, captures the results, and hands the human a verified deliverable they can execute on their own infrastructure.

This is not a limitation – it is a design choice. The output is always a deliverable, never a direct action on someone else’s systems. This boundary is what makes the approach safe enough for production infrastructure work and trustworthy enough for enterprise change management.

Structuring Effective On-Call Runbooks: Format, Escalation, and Diagnostic Decision Trees

Why Runbooks Exist#

An on-call engineer paged at 3 AM has limited cognitive capacity. They may not be familiar with the specific service that is failing. They may have joined the team two weeks ago. A runbook bridges the gap between the alert firing and the correct human response. Without runbooks, incident response depends on tribal knowledge – the engineer who built the service and knows its failure modes. That engineer is on vacation when the incident hits.

Kubernetes Disaster Recovery: Runbooks for Common Incidents

Kubernetes Disaster Recovery Runbooks#

These runbooks cover the incidents you will encounter in production Kubernetes environments. Each follows the same structure: detection, diagnosis, recovery, and prevention. Print these out, bookmark them, put them in your on-call wiki. When the alert fires at 2 AM, you want a checklist, not a tutorial.

Incident Response Framework#

Every incident follows the same cycle:

  1. Detect – monitoring alert, user report, or kubectl showing unhealthy state
  2. Assess – determine scope and severity. Is it one pod, one node, or the entire cluster?
  3. Contain – stop the bleeding. Prevent the issue from spreading
  4. Recover – restore normal operation
  5. Post-mortem – document what happened, why, and how to prevent it

Runbook 1: Node Goes NotReady#

Detection: Node condition changes to Ready=False. Pods on the node are rescheduled (if using Deployments). Monitoring alerts on node status.