CI/CD Cost Optimization: Runner Sizing, Caching ROI, Spot Instances, and Build Minute Economics

CI/CD Cost Optimization#

CI/CD costs grow quietly. A team of ten pushing five times a day, running a 15-minute pipeline on 4-core runners, burns through 2,500 build minutes per week. On GitHub Actions at $0.008/minute for Linux runners, that is $20/week. Scale to fifty developers with integration tests, matrix builds, and nightly jobs, and you are looking at $500-$2,000/month before anyone notices.

The fix is not running fewer tests or skipping builds. It is eliminating waste: jobs that use more compute than they need, caches that are never restored, full builds triggered by README changes, and runners sitting idle between jobs.

Cloud Cost Optimization

The Cost Optimization Hierarchy#

Cloud cost optimization follows a hierarchy of impact. Work from the top down – fixing the wrong tier of commitment discount matters far less than shutting down resources nobody uses.

  1. Eliminate waste – turn off unused resources, delete orphaned storage
  2. Right-size – match instance sizes to actual usage
  3. Use commitment discounts – reserved instances, savings plans, CUDs
  4. Shift to spot/preemptible – for fault-tolerant workloads
  5. Optimize storage and network – tiering, transfer patterns, caching
  6. Architect for cost – serverless, auto-scaling, multi-region strategy

Eliminating Waste#

The fastest cost reduction comes from finding resources that serve no purpose. Every cloud provider accumulates these: instances left running after a test, snapshots from decommissioned servers, load balancers with no backends, unattached disks.

Kubernetes Cost Audit and Reduction: A Systematic Operational Plan

Kubernetes Cost Audit and Reduction#

Kubernetes clusters accumulate cost waste silently. Resource requests padded “just in case” during initial deployment never get revisited. Load balancers created for debugging stay running. PVCs from deleted applications persist. Over six months, a cluster originally running at $5,000/month can drift to $12,000 with no corresponding increase in actual workload.

This operational plan works through cost reduction systematically, starting with visibility (you cannot cut what you cannot see), moving through quick wins, then tackling the larger structural optimizations that require data collection and careful rollout.

Kubernetes FinOps: Decision Framework for Cost Optimization Strategies

Kubernetes FinOps: Decision Framework for Cost Optimization#

FinOps in Kubernetes is the practice of bringing financial accountability to infrastructure spending. The challenge is not a lack of cost-saving techniques – it is knowing which ones to apply first, which combinations work together, and which ones introduce risk that outweighs the savings. This article provides a structured decision framework for selecting and prioritizing Kubernetes cost optimization strategies.

The Five Optimization Levers#

Every Kubernetes cost optimization effort works across five levers. Each has a different risk profile, implementation effort, and savings ceiling.

Spot Instances and Preemptible Nodes: Running Kubernetes on Discounted Compute

Spot Instances and Preemptible Nodes#

Spot instances are unused cloud capacity sold at a steep discount – typically 60-90% off on-demand pricing. The trade-off: the cloud provider can reclaim them with minimal notice. AWS gives a 2-minute warning, GCP gives 30 seconds, and Azure varies. Running Kubernetes workloads on spot instances is one of the most effective cost reduction strategies available, but it requires architecture that tolerates sudden node loss.