Alertmanager Configuration and Routing

Routing Tree#

Alertmanager receives alerts from Prometheus and decides where to send them based on a routing tree. Every alert enters at the root route and travels down the tree until it matches a child route. If no child matches, the root route’s receiver handles it.

# alertmanager.yml
global:
  resolve_timeout: 5m
  slack_api_url: "https://hooks.slack.com/services/T00/B00/xxx"
  pagerduty_url: "https://events.pagerduty.com/v2/enqueue"

route:
  receiver: "default-slack"
  group_by: ["alertname", "namespace"]
  group_wait: 30s
  group_interval: 5m
  repeat_interval: 4h
  routes:
    - match:
        severity: critical
      receiver: "pagerduty-oncall"
      group_wait: 10s
      repeat_interval: 1h
      routes:
        - match:
            team: database
          receiver: "pagerduty-dba"
    - match:
        severity: warning
      receiver: "team-slack"
      repeat_interval: 12h
    - match_re:
        namespace: "staging|dev"
      receiver: "dev-slack"
      repeat_interval: 24h

Timing parameters matter. group_wait is how long Alertmanager waits after receiving the first alert in a new group before sending the notification – this lets it batch related alerts together. group_interval is the minimum time before sending updates about a group that already fired. repeat_interval controls how often an unchanged active alert is re-sent.

Debugging and Tuning Alerts: Why Alerts Don't Fire, False Positives, and Threshold Selection

When an Alert Should Fire but Does Not#

Silent alerts are the most dangerous failure mode in monitoring. The system appears healthy because no one is being paged, but the condition you intended to catch is actively occurring. Work through this checklist in order.

Step 1: Verify the Expression Returns Results#

Open the Prometheus UI at /graph and run the alert expression directly. If the expression returns empty, the alert cannot fire regardless of anything else.

Observability Stack Troubleshooting: Diagnosing Prometheus, Alertmanager, Grafana, and Pipeline Failures

“I’m Not Seeing Metrics” – Systematic Diagnosis#

This is the most common observability complaint. Work through these steps in order to isolate where the pipeline breaks.

Step 1: Is the Target Being Scraped?#

Open the Prometheus UI at /targets. Search for the job name or target address. Look at three things: state (UP or DOWN), last scrape timestamp, and error message.

Status: UP    Last Scrape: 3s ago    Duration: 12ms    Error: (none)
Status: DOWN  Last Scrape: 15s ago   Duration: 0ms     Error: connection refused

If the target does not appear at all, Prometheus does not know about it. This means the scrape configuration (or ServiceMonitor) is not matching the target. Jump to the ServiceMonitor checklist at the end of this guide.

Structuring Effective On-Call Runbooks: Format, Escalation, and Diagnostic Decision Trees

Why Runbooks Exist#

An on-call engineer paged at 3 AM has limited cognitive capacity. They may not be familiar with the specific service that is failing. They may have joined the team two weeks ago. A runbook bridges the gap between the alert firing and the correct human response. Without runbooks, incident response depends on tribal knowledge – the engineer who built the service and knows its failure modes. That engineer is on vacation when the incident hits.

Synthetic Monitoring: Proactive Uptime Checks, Blackbox Exporter, and External Probing

What Synthetic Monitoring Is#

Synthetic monitoring means actively probing your services on a schedule rather than waiting for users to report problems. Instead of relying on internal health checks or real user traffic to detect issues, you send controlled requests and measure the results. The fundamental question it answers is: “Is my service reachable and responding correctly right now?”

This is distinct from real user monitoring (RUM), which observes actual user interactions. Synthetic probes run 24/7 regardless of traffic volume, so they catch outages at 3 AM when no users are active. They provide consistent, repeatable measurements that are easy to alert on. The tradeoff is that synthetic probes test a narrow, predefined path – they do not capture the full range of user experience.