Kubernetes FinOps: Decision Framework for Cost Optimization Strategies

Kubernetes FinOps: Decision Framework for Cost Optimization#

FinOps in Kubernetes is the practice of bringing financial accountability to infrastructure spending. The challenge is not a lack of cost-saving techniques – it is knowing which ones to apply first, which combinations work together, and which ones introduce risk that outweighs the savings. This article provides a structured decision framework for selecting and prioritizing Kubernetes cost optimization strategies.

The Five Optimization Levers#

Every Kubernetes cost optimization effort works across five levers. Each has a different risk profile, implementation effort, and savings ceiling.

Kubernetes Cost Optimization: Rightsizing, Resource Efficiency, and Waste Reduction

Kubernetes Cost Optimization#

Most Kubernetes clusters run at 15-30% actual CPU utilization but are billed for the full provisioned capacity. The gap between what you reserve and what you use is pure waste. This article covers the practical workflow for finding and eliminating that waste.

The Cost Problem: Requests vs Actual Usage#

Kubernetes resource requests are the foundation of cost. When a pod requests 4 CPUs, the scheduler reserves 4 CPUs on a node regardless of whether the pod ever uses more than 0.1 CPU. The node is sized (and billed) based on what is reserved, not what is consumed.

Spot Instances and Preemptible Nodes: Running Kubernetes on Discounted Compute

Spot Instances and Preemptible Nodes#

Spot instances are unused cloud capacity sold at a steep discount – typically 60-90% off on-demand pricing. The trade-off: the cloud provider can reclaim them with minimal notice. AWS gives a 2-minute warning, GCP gives 30 seconds, and Azure varies. Running Kubernetes workloads on spot instances is one of the most effective cost reduction strategies available, but it requires architecture that tolerates sudden node loss.