Container Runtime Security Hardening

Why Runtime Security Matters#

Container images get scanned for vulnerabilities before deployment. Admission controllers enforce pod security standards at creation time. But neither addresses what happens after the container starts running. Runtime security fills this gap: it detects and prevents malicious behavior inside running containers.

A compromised container with a properly hardened runtime is limited in what damage it can cause. Without runtime hardening, a single container escape can compromise the entire node.

Converting kubectl Manifests to Helm Charts: Packaging for Reuse

Converting kubectl Manifests to Helm Charts#

You have a set of YAML files that you kubectl apply to deploy your application. They work, but deploying to a second environment means copying files and editing values by hand. Helm charts solve this by parameterizing your manifests.

Step 1: Scaffold the Chart#

Create the chart structure with helm create:

helm create my-app

This generates:

my-app/
  Chart.yaml           # Chart metadata (name, version, appVersion)
  values.yaml          # Default configuration values
  charts/              # Subcharts / dependencies
  templates/
    deployment.yaml    # Deployment template
    service.yaml       # Service template
    ingress.yaml       # Ingress template
    hpa.yaml           # HorizontalPodAutoscaler
    serviceaccount.yaml
    _helpers.tpl       # Named template helpers
    NOTES.txt          # Post-install message
    tests/
      test-connection.yaml

Delete the generated templates you do not need. Keep _helpers.tpl – it provides essential naming functions.

Converting kubectl Manifests to Terraform: From Manual Applies to Infrastructure as Code

Converting kubectl Manifests to Terraform#

You have a working Kubernetes setup built with kubectl apply -f. It works, but there is no state tracking, no dependency graph, and no way to reliably reproduce it. Terraform fixes all three problems.

Step 1: Export Existing Resources#

Start by extracting what you have. For each resource type, export the YAML:

kubectl get deployment,service,configmap,ingress -n my-app -o yaml > exported.yaml

For a single resource with cleaner output:

Debugging ArgoCD: Diagnosing Sync Failures, Health Checks, RBAC, and Repo Issues

Debugging ArgoCD#

Most ArgoCD problems fall into predictable categories: sync stuck in a bad state, resources showing OutOfSync when they should not be, health checks reporting wrong status, RBAC blocking operations, or repository connections failing. Here is how to diagnose and fix each one.

Application Stuck in Progressing#

An application stuck in Progressing means ArgoCD is waiting for a resource to become healthy and it never does. The most common causes:

Deploying Nginx on Kubernetes

Deploying Nginx on Kubernetes#

Nginx shows up in Kubernetes in two completely different roles. First, as a regular Deployment serving static content or acting as a reverse proxy for your application. Second, as an Ingress controller that watches Ingress resources and dynamically reconfigures itself. These are different deployments with different images and different configuration models. Knowing when to use which saves you from over-engineering or under-engineering your setup.

Nginx as a Web Server (Deployment + Service + ConfigMap)#

For serving static files or acting as a reverse proxy in front of your application pods, deploy nginx as a standard Deployment.

Detecting Infrastructure Knowledge Gaps: What Agents Don't Know They Don't Know

Detecting Infrastructure Knowledge Gaps#

The most dangerous thing an agent can do is confidently produce a deliverable based on wrong assumptions. An agent that assumes x86_64 when the target is ARM64, that assumes PostgreSQL 14 behavior when the target runs 15, or that assumes AWS IAM patterns when the target is Azure – that agent produces a runbook that will fail in ways the human did not expect and may not understand.

Devcontainer Sandbox Templates: Zero-Cost Validation Environments for Infrastructure Development

Devcontainer Sandbox Templates#

Devcontainers provide disposable, reproducible development environments that run in a container. You define the tools, extensions, and configuration in a .devcontainer/ directory, and any compatible host – GitHub Codespaces, Gitpod, VS Code with Docker, or the devcontainer CLI – builds and launches the environment from that definition.

For infrastructure validation, devcontainers solve a specific problem: giving every developer and every CI run the exact same set of tools at the exact same versions, without requiring them to install anything on their local machine. A Kubernetes devcontainer includes kind, kubectl, helm, and kustomize at pinned versions. A Terraform devcontainer includes terraform, tflint, checkov, and cloud CLIs. The environment is ready to use the moment it starts.

Distributed Tracing in Practice

Trace, Span, and Context#

A trace represents a single request flowing through a distributed system. It is identified by a 128-bit trace ID. A span represents one unit of work within that trace – an HTTP handler, a database query, a message publish. Each span has a name, start time, duration, status, attributes (key-value pairs), and events (timestamped annotations). Spans form a tree: every span except the root has a parent span ID.

EKS IAM and Security

EKS IAM and Security#

EKS bridges two identity systems: AWS IAM and Kubernetes RBAC. Understanding how they connect is essential for both granting pods access to AWS services and controlling who can access the cluster.

IAM Roles for Service Accounts (IRSA)#

IRSA lets Kubernetes pods assume IAM roles without using node-level credentials. Each pod gets exactly the AWS permissions it needs, not the broad permissions attached to the node role.

EKS Networking and Load Balancing

EKS Networking and Load Balancing#

EKS networking differs fundamentally from generic Kubernetes networking. Pods get real VPC IP addresses, load balancers are AWS-native resources, and networking decisions have direct cost and IP capacity implications.

VPC CNI: How Pod Networking Works#

The AWS VPC CNI plugin assigns each pod an IP address from your VPC CIDR. Unlike overlay networks (Calico, Flannel), pods are directly routable within the VPC. This means security groups, NACLs, and VPC flow logs all work with pod traffic natively.