FIPS 140 Compliance: Validated Cryptography, FIPS-Enabled Runtimes, and Kubernetes Deployment

FIPS 140 Compliance#

FIPS 140 (Federal Information Processing Standard 140) is a US and Canadian government standard for cryptographic modules. If you sell software to US federal agencies, process federal data, or operate under FedRAMP, you must use FIPS 140-validated cryptographic modules. Many regulated industries (finance, healthcare, defense) also require or strongly prefer FIPS compliance.

FIPS 140 does not tell you which algorithms to use — it validates that a specific implementation of those algorithms has been tested and certified by an accredited lab (CMVP — Cryptographic Module Validation Program).

Implementing Compliance as Code

Implementing Compliance as Code#

Compliance as code encodes compliance requirements as machine-readable policies evaluated automatically, continuously, and with every change. Instead of quarterly spreadsheet audits, a policy like “all S3 buckets must have encryption enabled” becomes a check that runs in CI, blocks non-compliant Terraform plans, and scans running infrastructure hourly. Evidence generation is automatic. Drift is detected immediately.

Step 1: Map Compliance Controls to Technical Policies#

Translate your compliance framework’s controls into specific, testable technical requirements. This mapping bridges auditor language and infrastructure code.

Multi-Cloud vs Single-Cloud Strategy Decisions

Multi-Cloud vs Single-Cloud Strategy#

Multi-cloud is one of the most oversold strategies in infrastructure. Vendors, consultants, and conference speakers promote it as the default approach, but the reality is that most organizations are better served by a single cloud provider used well. This framework helps you determine whether multi-cloud is actually worth the cost for your situation.

The Default Answer Is Single-Cloud#

Start with single-cloud unless you have a specific, concrete reason to go multi-cloud. Here is why.

Prompt Engineering for Infrastructure Operations: Templates, Safety, and Structured Reasoning

Prompt Engineering for Infrastructure Operations#

Infrastructure prompts differ from general-purpose prompts in one critical way: the output often drives real actions on real systems. A hallucinated filename in a creative writing task is harmless. A hallucinated resource name in a Kubernetes delete command causes an outage. Every prompt pattern here is designed with that asymmetry in mind – prioritizing correctness and safety over cleverness.

Structured Output for Infrastructure Data#

Infrastructure operations produce structured data: IP addresses, resource names, status codes, configuration values. Free-form text responses create parsing fragility. Force structured output from the start.

Regulatory Compliance Frameworks: HIPAA, FedRAMP, ITAR, and SOX Technical Controls

Regulatory Compliance Frameworks#

Regulatory compliance translates legal requirements into technical controls. Understanding which regulations apply to your system and mapping them to infrastructure and application design is a core engineering responsibility in regulated industries.

This guide covers four major frameworks and their practical implications for software architecture. These are not exhaustive compliance guides — they map the most impactful technical controls for each framework.

HIPAA (Health Insurance Portability and Accountability Act)#

HIPAA applies to organizations handling Protected Health Information (PHI) — any data that can identify a patient and relates to their health condition, treatment, or payment.

Sandbox to Production: The Complete Workflow for Verified Infrastructure Deliverables

Sandbox to Production#

An agent that produces infrastructure deliverables works in a sandbox. It does not touch production. It does not reach into someone else’s cluster, database, or cloud account. It works in an isolated environment, tests its work, captures the results, and hands the human a verified deliverable they can execute on their own infrastructure.

This is not a limitation – it is a design choice. The output is always a deliverable, never a direct action on someone else’s systems. This boundary is what makes the approach safe enough for production infrastructure work and trustworthy enough for enterprise change management.

Writing Custom Prometheus Exporters: Exposing Application and Business Metrics

When to Write a Custom Exporter#

The Prometheus ecosystem has exporters for most infrastructure components: node_exporter for Linux hosts, kube-state-metrics for Kubernetes objects, mysqld_exporter for MySQL, and hundreds more. You write a custom exporter when your application or service does not have a Prometheus endpoint, you need business metrics that no generic exporter can provide (revenue, signups, queue depth), or you need to adapt a non-Prometheus system that exposes metrics in a proprietary format.